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The joint modeling of brain imaging information and genetic data is a
promising research avenue to highlight the functional role of genes in
determining the pathophysiological mechanisms of Alzheimer’s dis-
ease (AD). However, since genome-wide association (GWA) studies
are essentially limited to the exploration of statistical correlations
between genetic variants and phenotype, the validation and interpre-
tation of the findings are usually nontrivial and prone to false posi-
tives. To address this issue, in this work, we investigate the functional
genetic mechanisms underlying brain atrophy in AD by studying the
involvement of candidate variants in known genetic regulatory func-
tions. This approach, here termed functional prioritization, aims at
testing the sets of gene variants identified by high-dimensional mul-
tivariate statistical modeling with respect to known biological pro-
cesses to introduce a biology-driven validation scheme. When applied
to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort,
the functional prioritization allowed for identifying a link between
tribbles pseudokinase 3 (TRIB3) and the stereotypical pattern of
gray matter loss in AD, which was confirmed in an independent
validation sample, and that provides evidence about the relation
between this gene and known mechanisms of neurodegeneration.
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Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder, and its etiology still remains largely concealed. In

anticipation of increasing prevalence of AD and other dementias,
there is an urgent need for improving the understanding of the
disease processes that underlie neurodegeneration. While the
knowledge about the genetic and environmental risks underpinning
AD is steadily advancing, how these factors interact to lead to the
complex pathophysiology that results in dementia is less understood.
Advances in imaging technologies have led to noninvasive or

minimally invasive imaging biomarkers that capture various aspects
of the disease process, including amyloid deposition (1), tau pa-
thology (2), functional decline (3), and neuronal loss (4). Com-
bining such imaging information with genetic measurements—
so-called imaging–genetics—provides the means for investigating the
effect of genetic variation on underlying biological mechanisms (5).
Genome-wide association studies (GWAS) query millions of

SNPs individually for their association with either case–control
status (6) or disease-specific quantitative phenotypes [e.g., in the
case of AD, regional brain volumes (7) or brain amyloid burden
(8)]. Mass univariate analysis of genetic data is still the predominant
method in virtue of its ease of use and well-established theoretical
framework, albeit that it suffers from significant limitations, in-
cluding the requirement for multiple testing, redundancies in-
troduced by linkage disequilibrium (LD), and the lack of analysis of
epistatic effects (e.g., SNP–SNP interactions), which have to be
explicitly modeled and searched for exhaustively (9). Moreover,
more than one quantitative phenotype can be derived from the

available imaging data (e.g., dozens or hundreds of regional brain
volumes or hundreds of thousands of voxel-level metrics) (10). This
potentially large number of genotype–phenotypes features of in-
terest generally complicates the problem of reliably detecting sta-
tistical associations and thus, hampers the identification of disease-
relevant genetic markers by purely statistical means.
Limitations of classical mass univariate statistical methods have,

in recent years, been overcome by using multivariate approaches
to data analysis in the context of neuroscience studies (11) and
GWAS (12). Likewise, in imaging–genetics, meaningful genotype–
phenotype interactions (13) are captured by simultaneously
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modeling sets of genetic variants that are jointly associated with a
given imaging phenotype (14–17). Multivariate GWAS have the
potential to shed light on the complex genotype–phenotype re-
lationship and may thus highlight novel links between brain physi-
ology and molecular and biological functions. However, although
these methods have proven their ability to identify meaningful SNP
combinations associated with brain imaging features, the in-
terpretation and validation of the statistical findings remain very
challenging tasks. These problems relate directly to the un-
derstanding of the functional role of sets of genetic variants and to
the difficulty of replicating the statistical results in unseen cohorts.
We approach this technical bottleneck by leveraging multivari-

ate approaches to explore high-dimensional datasets and to gen-
erate hypotheses, which are subsequently tested in downstream
experiments. High-quality databases of matched genotype and
gene expression measurements, such as the Genotype Tissue Ex-
pression project (GTEx; gtexportal.org/home/) (18) and BRAINEAC
(www.braineac.org/) (19), facilitate the quantification of effects of
SNPs on gene expression in numerous tissues, including various
brain tissues. Typically, these databases are used to detail the effect
of a genetic variant at the very end of an analysis pipeline and to
garner evidence for molecular mechanisms of the genetic locus.
However, functional information in “convenience” databases can
also be used at an earlier stage in the analysis to prioritize a few
candidate hypotheses with a clear functional mechanism [e.g., ex-
pression quantitative trait loci (eQTL)] for the validation phase
and thus, limit the multiple testing burden.
In this work, we apply this investigative approach to study the

genetic functional mechanisms underlying brain atrophy in AD.
The framework is composed of two steps.

i) Statistical discovery. Candidate genetic variants are initially iden-
tified through data-driven multivariate statistical analysis of the
matched imaging and genetics data (Fig. 1). This is achieved by
modeling the joint covariation between 1.1 million SNPs and the
cortical and subcortical atrophy represented by 327,684 cortical

and 27,120 subcortical thickness values of 639 individuals (either
healthy older controls or patients with AD) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort.

ii) Functional prioritization. The candidate genetic variants are
subsequently screened for functional relevance by querying
high-dimensional gene expression databases, such as GTEx.

The resulting small set of genetic loci, which are shown to modify
gene expression, is then validated in an independent sample of
553 individuals from the ADNI diagnosed with mild cognitive
impairment (MCI), a proportion of whom progressed to AD.
Compared with previous approaches, our work (i) analyzes the

whole genome and whole brain in a hypothesis-free fashion (i.e.,
without preselecting SNPs or brain regions) and (ii) uses a
functional prioritization step to select genetic loci for validation
in an independent cohort.
Starting from the initial ∼1.1 million SNPs, the multivariate sta-

tistical analysis allowed for the identification of a relatively small
number of genetic loci that are statistically associated with the typ-
ical pattern of AD brain pathology. The subsequent functional
prioritization step ultimately identified a significant role of tribbles
pseudokinase 3 (TRIB3), a gene showing important connections to
knownmechanisms of neurodegenerative diseases. Indeed, although
a role for TRIB3 in dementia has not been extensively explored,
there are several aspects of TRIB3 function that have relevance to
mechanisms related to neuronal death, cellular homeostasis, and
interaction with established AD genes, such as APP and PSEN1.
This study ultimately offers an illustration of the potential of ef-

fectively combining multivariate statistical modeling in imaging–
genetics with recent instruments available from computational biology
to lead to insights on the pathophysiology of neurodegeneration.

Results
Model Training and Estimated Components. Figs. 2 and 3 show the
relevant areas of the identified joint genetic and phenotype

Fig. 1. Cross-validation scheme for the assessment of the genetic loci of maximal genotype–phenotype correlation identified by the PLS model. The whole pro-
cedure is repeated 1 million times, and the resulting array is further analyzed. (A) PLS is applied in a split-half setting. For each of the two nonoverlapping randomly
sampled groups, the PLS components of joint phenotype and genotype variation are independently estimated. (B, Left) Each chromosome is partitioned in bins of
10-kb size, which are labeled one if they contain an SNP associated with the largest PLS weights (top 10% of absolute values) or zero otherwise. To obtain stable
estimates of the loci of maximal weights, the resulting binary arrays independently estimated in the two groups are merged (binwise and operation). The same
procedure is applied on themesh-based PLS weights associatedwith the phenotype component. (C) Steps A and B are repeated across 1 million folds, and the results
are subsequently averaged to obtain the confidence maps associated with genetic and phenotype components (Figs. 2 and 3).
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variation, respectively, for the first three partial least squares (PLS)
components through stability selection. The components were very
robust (100% reproducible) during the stability selection pro-
cedure (SI Materials and Methods). The fourth and fifth compo-
nents did not present any relevant locations (i.e., all bins have P <
0.95) after stability selection for both the genetic modality and the
imaging modality.

Genetic Components. The circular Manhattan plot [Circos v0.96
(20)] of Fig. 2 shows the selection frequency for the PLS genotype
components and describes the importance of the genetic loci
associated with cortical thickness variation for components 1–3.
The plot shows the probability of a given genetic bin of size 10 kb
being relevant in the PLS model (i.e., to contain an SNP that is
ranked in the top 10% of the absolute weights of the genotype
component). Spatially contiguous loci generally show similar im-
portance values, which are caused by LD of these regions.
In the genetic components 1–3, a total of 118 bins exceeded the

selection frequency threshold (61, 50, and 7 for components 1–3,
respectively). From these bins, 402 (196, 181, and 25) influential
SNPs were extracted and annotated with 98 genes through the
Ensembl Variant Effect Predictor (VEP) for GRCh37 (date
accessed: October 17, 2016) (21). The extended Apolipoprotein E
(APOE) locus comprising APOE and TOMM40 was selected as the
highest scoring region in component 1. A total of 3,956 candidate
SNP–gene pairs were considered for the GTEx-based eQTL analysis
in six tissues. However, a few genes did not show sufficient expres-
sion levels in some tissues, and these combinations were excluded
from the analysis, resulting in 1,598 unique SNP–gene tissue tests, of
which 104 were significant at the Bonferroni-corrected P value
threshold (P = 3.1e−5) (Dataset S1) linking to 14 genes (Dataset S2

and Fig. S5): CAPN9, CRYL1, FAM135B, IL-10 receptor subunit
alpha (IL10RA), IP6K3, ITGA1, KIN, LAMC1, LINC00941, LYSMD4,
RBPMS2, RP11-181K3.4, TM2 domain-containing 1 (TM2D1),
and TRIB3. These genes are listed in the innermost circle of Fig.
2 depending on their genomic position.
The independent validation of those 14 genes in the MCI cohort

confirmed TRIB3 (P = 0.0034) (Table 1). Three additional genes
were close to nominal significance: TM2D1 (P = 0.053), LAMC1
(P = 0.062), and RP11-181K3.4 (P = 0.053) (Table 1). Of note, the
top eQTL SNP for TRIB3 rs4813620 received a P = 0.06175 in
stage 1 of a large AD GWAS (6). However, rs62191440, an SNP in
strong LD with rs4813620 (D′ = 0.8469; r2 = 0.6559) in the Eu-
ropean population (22), received a P value of 0.00601 (Fig. S6) and
also constitutes an eQTL for TRIB3 in various tissues in GTEx,
including brain tissues cortex and caudate ganglia (Fig. S7). In-
terestingly, when estimating the PLS components on the subcohort
of 279 training individuals positive to amyloid in the cerebrospinal
fluid (CSF) (Table 2), we achieved compatible validation results in
the independent MCI group. Within this setting, TRIB3 still leads
to marginally significant differences (P = 0.0134) between pro-
gressing and stable MCI (Table S1).

Morphometric Components. Fig. 3 shows the PLS phenotype compo-
nents 1–3 along with the associated selection frequency describing
the loci of brain atrophy associated with genetic variation. The first
component is mainly associated with the thinning of the cortical
mantle and is localized in temporal and posterior cingulate cortices.
The relevant areas at the subcortical level are primarily associated
with amygdalae and thalami. The second component is mostly as-
sociated with the thinning of the subcortical areas (hippocampi and
amygdalae) and with the cortical thinning of the temporal areas at
the cortical level. The third component is similar to component
2 and describes a subcortical thickness pattern prevalent in hippo-
campi, amygdalae, and thalami. At the cortical level, the component
is associated with the thinning of frontal cortice and with isolated
spots located in the parahippocampal gyrus.

Discussion
In this work, we modeled high-dimensional genome-wide SNP
data and brain-wide cortical thickness data via joint multivariate
statistical modeling and functional prioritization of genes through
bioinformatics annotation and a large eQTL database.
Our study ultimately identified a link between TRIB3 and the ste-

reotypical pattern of gray matter loss in AD (cortical thinning in
temporal and posterior cingulate regions and subcortical atrophy).
TRIB3 is a pseudokinase that acts as a regulator of several signaling
pathways. For example, it can interact directly with Akt and inhibit the
prosurvival Akt pathway (23). TRIB3 expression is induced during
neuronal cell death (24), and recently increased levels of the
TRIB3 protein were found in dopaminergic neurons of the substantia
nigra pars compacta in patients with Parkinson’s disease (25). TRIB3
expression is stress induced and increases in response to nerve growth
factor deprivation, endoplasmatic reticulum stress, and amino acid
deprivation (24). Although a role for TRIB3 in dementia has not been
extensively explored, there are several aspects of TRIB3 function that
have relevance to known mechanisms of neurodegenerative disease.
TRIB3 can interact directly with P62 to modulate autophagic flux (26),
an important process in maintaining cellular homeostasis that is known
to be disrupted in neurodegeneration (27). Knockdown of TRIB3
modulates PSEN1 stability (26), and a yeast two-hybrid screen identified
progranulin as a direct interaction partner of TRIB3 (28). Intriguingly, it
has recently been shown that TRIB3 induces both apoptosis and
autophagy in Aβ-induced neuronal death, and silencing of TRIB3 was
strongly neuroprotective (29). These links warrant additional investiga-
tion for a functional role of TRIB3 in neuronal death in dementia.
These earlier findings align with our eQTL analysis, where

carriers of the minor allele show increased TRIB3 expression
(Fig. S5), which potentially lowers the threshold to TRIB3-mediated
neuronal cell death. TRIB3 expression was modulated by the
identified SNP in various other tissues, including the caudate (Fig.
S7), a region affected in Parkinson’s disease and Huntington’s

Fig. 2. PLS genotype component: the circular plots show the probability of a
given genetic locus being associated with the phenotype components shown
in Fig. 3. Outer to inner circles represents components 1–3, respectively. The
plots show the probability of a given genetic bin of size 10 kb being relevant
in the PLS model (i.e., to contain an SNP that is ranked in the top 10% of the
absolute weights of the genotype component). The genes with eQTL close to
the important loci (P > 0.95) are listed in the innermost circle depending on
their genomic position. The red radial lines are located in correspondence of
known AD genes: ABCA7, APOE, APP, BIN1, CASS4, CD2AP, CD33, CELF1, CLU,
CR1, DSG2, EPHA1, FERMT2, HLA-DRB5, INPP5D, MAPT, MEF2C, MS4, NME8,
PICALM, PSEN1, PSEN2, PTK2B, SLC24A4, SORL1, and ZCWPW1. High-resolu-
tion circular plots for each component are provided in Figs. S2–S4.
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disease. A recent study of Trib3 expression in mice concluded that
“Trib3 has a pathophysiological role in diabetes” (30); diabetes
itself is a known risk factor for dementia (31), perhaps through
shared metabolic processes with AD (32). Interestingly, one of
three SNPs (rs1555318) selected in the PLS model and attributed
to TRIB3 showed a strong association with type 2 diabetes in stage
1 of a large GWAS (P = 4.4e−4) (Fig. S8) (33). Other GWAS
showed links between TRIB3 and information processing speed
(P = 1.7e−7) (34) and AD (P = 0.006) (6). An earlier genetic study
on AD in Swedish men found an association in TRIB3 as well (P =
0.044) (35), which was replicated in a Canadian cohort (P < 0.001)
(36). Lastly, TRIB3 was reported to physically interact with APP
(37), and it shares numerous functional annotations for biological
processes regarding lipid metabolism with APOE.
The functional prioritization component of the analysis suc-

cessfully reduced the set of candidate genetic variants for the
independent validation; however, this prioritization has a short-
coming: it hypothesizes that identified SNPs alter the expression
of a nearby gene. Although this scheme led to the identification
of TRIB3 in the cortical thickness phenotype, it did miss a long-
established AD risk gene: APOE. SNPs belonging to APOE
(rs429358 and rs7412) were selected as the highest-scoring SNPs
in component 1. However, none of them were detected as an
eQTL, and thus, APOE was excluded from the downstream
analysis. Other types of functional prioritizations based on ex-
onic function prediction may have retained APOE and other
genes in the pipeline. However, SNP data typically feature only a
few nonsynonymous exonic variants, and their high frequency
(minor allele frequency > 5%) renders them unlikely to receive
significant “damaging” scores in these predictions. Thus, for this
scenario, the use of these function predictions would be limited.
The list of genes that we identified contains other interesting

candidates. For instance, IL10RA is a receptor for IL-10, a cy-
tokine that controls inflammatory response (38). Carriers of the
minor allele show increased IL10RA expression (Fig. S5), and Il10ra
expression is increased in affected brain regions with increasing age

and presence of AD pathology in transgenic mouse models of AD
[MOUSEAC (39)] (Fig. S9). Moreover, a link between down-
regulation of IL10RA and TRIB3 in TRIB3-silenced HepG2 cells
was reported in ref. 26 along with increased abundance of Presenilin
1, ApoE3, and Clusterin. Finally, blocking IL-10 response was
recently suggested as a therapeutic mechanism in AD (40). A gene
that showed a statistical trend in the validation sample was TM2D1,
which is a beta-amyloid binding protein and may be involved in beta-
amyloid–induced apoptosis (41). Furthermore, Myocyte Enhancer
Factor 2A (MEF2A), like APOE, was filtered out by the functional
prioritization. However, MEF2A is a paralog of MEF2C, which is an
established AD gene (6). Noteworthy, bins covering MEF2C only

Fig. 3. PLS phenotype component: Upper shows the topographical distribution of the PLS weights associated with the cortical and subcortical brain areas. The
absolute value of the weights is proportional to the importance of the underlying brain areas. The relevance of the brain areas is quantified in Lower. The colors
(red to white) indicate the probability of a brain area being associated with the genotype component shown in Fig. 2 and quantify the probability of each cortical
mesh point being relevant in the PLS model (i.e., to be ranked among the top 10% of the absolute weights of the phenotype component). L, left; R, right.

Table 1. Statistical comparison of the genes scores in training
and testing groups (Kruskal–Wallis nonparametric test)

Gene
P value training

(AD vs. healthy controls)
P value testing (MCI

converter vs. MCI stable)

TM2D1 0.0050 0.0528
IL10RA 0.1069 0.6198
TRIB3 0.0032 0.0034
ZBTB7A 0.0360 0.9135
LYSMD4 0.0000 0.2057
CRYL1 0.6213 0.1176
FAM135B 0.0000 0.5588
IP6K3 0.0000 0.4646
ITGA1 0.0993 0.7310
KIN 0.0014 0.2061
LAMC1 0.0019 0.0618
LINC00941 0.0000 0.6896
RBPMS2 0.0000 0.2149
RP11-181K3.4 0.0017 0.0527

The score for TRIB3 leads to significant differences in the MCI testing
group after Bonferroni correction for multiple comparisons.
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barely missed the selection threshold in component 2 for additional
analysis (maximum P = 0.926) (Fig. 2).
This study illustrates the potential of effectively combining mul-

tivariate statistical modeling in imaging–genetics with recent in-
struments available from computational biology to lead to insights
on the disease pathophysiology. Thanks to the ever-growing data-
driven knowledge based on the vast quantities of information now
available to the research community, the paradigm proposed in this
study may represent a promising avenue for linking imaging–
genetics findings to the current knowledge on functional ge-
netics mechanisms involved in neurodegeneration.

Materials and Methods
This section describes the study data, the statistical setting, and the meth-
odology used in this study. Additional details and discussion about the
methodological aspects can be found in SI Materials and Methods.

Study Participants. Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership led by Principal Investigator Michael W.
Weiner. Up-to-date information is available at www.adni-info.org. This
research mainly involves further processing of previously collected personal
data according to the US ethics regulations. Each subject provided signed
informed consent before participation. We have explicit authorization for
the use of the ADNI dataset, and we have signed the relevant papers
guaranteeing that we abide by the ethics standards.

We selected genotype and phenotype data available in the ADNI-1/GO/
2 datasets for 1,192 subjects. Summary sociodemographic, clinical, and ge-
netic information is available in Table 2. At the time of study entry, subjects
were diagnosed as healthy individuals (n = 401), MCI (n = 553), or AD (n =
238). A total of 212 (38.3%) MCI patients subsequently converted to AD over
the course of the study (6 y). All participants were non-Hispanic Caucasian.
AD and MCI groups show significant cognitive decline measured by the Mini
Mental State Examination (MMSE) and the Alzheimer’s Disease Assessment
Scale (ADAS) Cognitive Subscale (COG) compared with the healthy individ-
uals (P < 1e−2, two-sample t test for groupwise comparison). There was also
a significant increase in individuals with pathological levels of Aβ1–42 in the
CSF (Aβ1–42 < 192 pg/mL) across the clinical groups, with proportions ranging
from 43% in healthy individuals to 93% in AD patients (P < 1e−2). Similarly,
we observed a higher prevalence of APOE4 carriers in AD and progressing
MCI individuals compared with healthy and MCI stable groups. For this
analysis, the 639 healthy and AD subjects form the discovery set, while the
MCI converters and nonconverters form the independent validation set.

Statistical Discovery. The joint relationship between the genetic and imaging
modalities was investigated through PLS modeling (42–44). Among the
several PLS versions proposed in the literature, we focus on the symmetric
formulation of PLS computed through the singular value decomposition of
the cross-covariance matrix (Fig. S1) (43, 44, 45). Within this setting, the aim
of PLS is to estimate the latent components that maximize the global co-
variance between the two input modalities. Each input feature receives a weight
in the latent component that represents its relative importance for describing
the global joint multimodal relationship. Analyzing these weights helps identify
SNPs that are linked to the patterns of cortical thinning in the brain.

In this study, we applied a robust approach for the stable estimation and
interpretation of PLS weights in genome-wide genotyping data aimed at pro-
moting sparsity (i.e., selecting only a few features for simplified interpretation)
and regularity (by aggregating SNPswithin the same genetic neighborhood). This
is achieved through a stability selection procedure, in which the reproducibility
and robustness of the PLS parameters are assessed through a split-half cross-
validation–based scheme on 1 million repetitions of the models on randomly
sampled subgroups (Fig. 1 and SI Materials and Methods). By considering a
predefined partition of each chromosome into contiguous loci of size 10 kb,
the procedure leads to the estimation of a confidence measure taking values
ranging between 0.0 and 1.0, indicating the probability of each genetic loci
containing highly reproducible PLS weights and therefore, serving as a mea-
sure of importance of the genomic location (Fig. 2). A similar procedure was
used to assess the importance of the phenotype component (Fig. 1). However,
no regional binning was used (Fig. 3). The procedure was applied to assess the
parameter reproducibility of the first five PLS modes; subsequent analyses
were performed only on components with relevant genetic and brain regions
(i.e., reproducible PLS weights with selection frequency >95%).

Gene Identification. We analyzed the 10-kb bins (genetic loci) with the se-
lection frequency exceeding 0.95 (i.e., bins selected in 95% or more of the
1 million replications). Within these bins, we then identified the influential
SNPs: an SNP was declared influential if it was associated with the weights of
greatest magnitude in the PLS components estimated on the full data sample
(i.e., SNPs with absolute weights exceeding the 99th quantile of all weights in
the component). These weights are the ones contributing to the high se-
lection frequency in the split-half procedure and are representative of the
significant variation modeled in the data.

To link SNPs to corresponding genes, we used the computational VEP for
GRCh37 with the GENCODE gene annotation. SNPs tagged as “regulatory”
were manually investigated and annotated with the nearby genes.

Functional Prioritization. All SNPs successfully annotated with a gene were
subjected to functional prioritization through eQTL analysis based on the GTEx
data. The sample size in GTEx for relevant brain tissues in AD was rather small
(e.g., n = 81 for hippocampus). Therefore, we added five more tissues with
large sample sizes that were more distantly relevant to AD. Nerve tibial (n =
256) was added as a proxy for nervous tissue, whole blood (n = 338) and artery
tibial (n = 285) were included to cover blood-based changes and effects on
blood vessels (46), and adipose s.c. (n = 298) was selected due to links between
AD and obesity, type 2 diabetes, and metabolic disease (47, 48). Finally,
transformed fibroblasts (n = 272) were included as a general purpose cell line.
P values were corrected for multiple testing using the Bonferroni method.

Model Validation in Independent MCI Subjects. The genes that were found to
be under expression control by the identified SNPs were validated for their
capacity to predict clinical conversion in MCI subjects. To this end, for each
identified gene, we applied the PLS weights estimated on the discovery set on
the validation set, with the genetic component restricted to SNPs ±20 kb from
the gene borders. The identified latent projections (i.e., a weighted sum of
SNPs) result in one score per subject per gene. For each gene, the association of
the projection score with conversion status was assessed by statistically com-
paring the scores distribution between healthy individuals and AD patients and
between MCI converters and nonconverters (Kruskal–Wallis nonparametric test
for two-sample comparison, Bonferroni correction for multiple comparisons).

Table 2. Sociodemographic, clinical, and genetic characteristics of the study cohort [mean (SD)]

Diagnosis at imaging

Discovery Validation

Healthy AD MCI stable Progressing MCI

N 401 238 341 212
Age, y 74.45 (5.5) 74.72 (7.9) 72.91 (7.6) 73.61 (7.51)
Education, y 16.36 (2.66) 15.34 (2.9) 16.05 (2.87) 15.82 (2.82)
Sex, % females 49 45 37 39
MMSE 29.1 (1.11) 23.2 (2) 27.91 (1.73) 26.87 (1.74)
ADAS11 5.98 (2.86) 19.85 (6.63) 9.29 (3.9) 13.31 (4.51)
Apoe 4, % zero/one/two alleles 72/26/2 31/48/21 54/36/10 33/51/16
CSF Aβ1–42, % positives (no. of

subjects with baseline measure)
43 (282) 93 (166) 62 (244) 85 (135)

Positivity to Aβ1–42 was defined with respect to the nominal cutoff of 192 pg/mL.
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